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TENSORIAL CALIBRATION.

II. SECOND ORDER CALIBRATION

EUGENIO SANCHEZ AND BRUCE R. KOWALSKI

Laboratory for Chemometrics, Department of Chemistry BG-1O. University of Washington
Seattle, Washington 98195, U.S.A.

SUMMARY

Tensorial calibration provides an useful approach to calibration in general. For

calibration of instruments that produce two-dimensional (second order) data arrays of data

per sample, tensorial concepts are a natural way of solving the calibration problems as

vectorial concepts are for multivariate problems. Similarly, for third- and higher-order

data, the tensorial description of calibration is also useful.

This paper introduces second order calibration from a tensorial point of view.

Univariate, multivariate and bilinear approaches to calibration are presented. The

generalized rank annihilation method (GRAM) is described from the tensorial perspective,

and it is shown that GRAM is equivalent to finding a second order tensorial base that spans

both tensors (calibration and unknown) with respective diagonal component matrices.

GRAM uses a single calibration sample for multicomponent analysis even in the presence

of interferences. Second order bilinear calibration is extended to multiple calibration

samples, where the effect of collinearities is reduced.

KEYWORDS Calibration Tensor Multivariate Second Order Regression

Generalized Rank Annihilation GRAM
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INTRODUCTION

The complexity and amount of data generated by modem instruments for chemical

analysis is in continuous increase. In particular, instruments that generate two-

dimensional arrays of data (second order instruments) are now commonplace in the

analytical laboratory. Time decay and emission-excitation fluorescence, chromatography-

spectroscopy combinations, MS-MS and 2D-NIR, are a few of the many "hyphenated

methods"1 ,2 that generate such data. These instruments have become very important for

the analyst mainly because their higher selectivity and resolution of signals, allowing for

analysis of mixtures. Most of the time it is necessary to analyze several samples, either

calibration or unknown samples. This additional complication implies that analysis of data

from second order instruments may involve handling a three-dimensional (third order)

array of data.

The normal way to handle this kind of data has been to choose from the array a single

element that is unique for the analyte of interest, discarding or not collecting the rest of the

data. For example, in MS-MS, is often possible to find daughter spectra ions that are

completely unique for one analyte of a mixture. For an emission-excitation matrix (EEM),

it is sometimes possible to find a combination of excitation and emission wavelengths for

which only the analyte of interest has a significant signal.

With the increased popularity of multichannel (first order) instruments such us FT-IR

spectrometers, the use of multivariate analysis in chemistry has increased in the last few

Syears. Research in multivariate calibration 3 of near infrared reflectance data,4,5 and curve

resolution 6,7 in chromatography are examples of this fact. The main advantage of using

these kind of instruments is that it is not necessary to have a unique signal to determine an

-,E
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analyte, by using the tools of multivariate calibration, e.g., multiple linear regression.

Second order instruments have also.benefit from multivariate analysis. In the simplest

case, a second order instrument produces a matrix of data that can be seen as a series of

first order data vectors. In fact, most second order instruments are a combination of two

first order instruments. E.g., in LC[UV, a UV spectrometer (first order) is combined

with a chromatograph (first order) to produce the instrument. Each scan can be seen as an

individual UV spectrum, and at each wavelength an individual chromatogram is obtained.

Therefore there are two possible multivariate (vectorial) spaces simultaneously: the spectral

and the chromatographic spaces. The matrix of data can be equivalently represented in one

or the other v's a set of vectors (or points) in a multidimensional space. Fig 1 illustrates this

point with an example.

A feasible approach for using multivariate calibration for second order instruments is to

unfold the matrix of data in a long vector. In this way, the calibration matrix is a set of

long vectors, and all the standard equations for multivariate calibration can be appled.

Wold and coworkers have recently presented this approach, as an extension of the

ordinary principal component (PC) and partial least squares (PLS) decompositions to sets

of data from second and higher order instrumentation.8

Even with all the value of the multivariate approach to second order instruments, a

serious limitation arises when using a vectorial representation for them. Multivariate

calibration is not useful for determining the concentration of analytes in samples with

unknown interfering constituents that were not accounted for in the calibration step. But

Ho, Christian and Davidson have shown that for certain second order instruments this is

not a problem.910

Conceptually, using a vectorial representation to describe second order data is similar

to using univariate relations for multivariate data, by taking multichannel information

4.



4-4

(vectorial) as a series of univariate data. In this case, it would reduce multichannel

instruments to the limitations of univariate (single channel) instruments.

Just like vectors are a an extension from scalars, there is an extension from vectors that

will describe second and higher order data, and that extension is tensors. Tensors

encompass scalars (zero order tensors), vectors (first order tensors) and any higher orders

(second- or higher order tensors) of data matrices. The first paper in these series was an

introduction to a tensorial approach to calibration using well-known first order

(multivariate) calibration1 1. This paper will use some of those ideas and concepts to

develop second order calibration, and show I- 1w for certain kinds of data it has

considerable advantages over first order calit

NOMENC ATURE

Boldface, capital letters represent tensors and matrices, e.g., A. For a given matrix

A, the matrices AT, A-1, A-, and A+ stand for its transpose, inverse, generalized

inverse and Moore-Penrose pseudoinverse, respectively. In general, an alternative

representation for any tensor is given by its tensor components, italized, e.g., xi, Xij,

Mijk, Mij..,, for a first, second, third and nth order tensor respectively, either subscript

or superscript. A first order tensor is equivalent to a vector. Boldface, lowercase letters

represent first order tensors and column vectors, v, and their transpose for a row vector,

vT. A matrix, e.g., V, and the set of its column vectors fvi} are conveniently designated

with the same letter, in upper case and indexed lowercase, respectively.

A standard summation convention is used to simplify nomenclature. When an index is

repeated more than once only in one side of an equation, it implies a summation over the

index valid range. 12

To avoid confusion of terms, certain definitions have to be established as they are used
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in this paper:

Order refers to the different directions or ways in a multi-order array or tensor.

Examples of different orders of tensors and instruments were given in the last section.

Synonyms of order used in the literature include "ways", "modes" and "spaces". We may

refer to, e.g., the spectral order as well as the spectral space.

Dimensionality is the number of elements in a given order. For example, if one order

corresponds to the UV spectrum, then the dimensionality of that order is the number of

different wavelengths that are measured. For a tensor that has several orders, each order

may have a different dimensionality.

Constituents are the chemical components in a sample that produce a response to the

instrument; Analytes are those constituents that are being analyzed.

Components refers to the elements of a tensor in a given set of bases. For example,

the elements of a vector are its components. Two kinds of components are defined:

" covariant and contravariant. 11,12 Also, in connection with principal components analysis,

component refers to the principal component vectors.

The rank in a given order of a tensor will be defined as the number of varying

independent factors in that order. The rank of an order cannot be greater than the

dimensionality in that order.

The rank of a tensor will be defined as the number of varying independent factors in

that tensor, above the noise level. For a non-null first order tensor (vector), the rank is

i. defined as one; for a second-order tensor, the rank is equivalent to the rank of its matrix of

components; For third and higher order tensor, the rank can be higher than the maximum

dimensionality. 13

,ON
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LINEAR SECOND ORDER TENSORIAL CALIBRATION MODEL

From tensorial theory, it is known that the components of a second order tensor are

also a matrix. Therefore, data acquired from a second order instrument can be defined as

the components of a tensor. Designating M1 the element at the i row andj column of a the

data matrix, then there is an associated tensor i whose components are 1i):
M = Mij ai bj (1)

ii

where ai represents the basis vectors for one order and bj represents the set of base

vectors in the other order. They are the standard (physical) bases; e.g., for a LC/UV

instrument, ai represents measurement at time i, bj represents measurement at

wavelength j, and, Mij is the instrument response at time i of the jh wavelength. Using

the summation convention, Eq 1 is equivalent to

NI = Mij a i bj (2)

The summation convention invariably applies to summation over a repeated index on one

side of the equation.

The response matrix M may be a function of many factors, and the concentrations of

the analytes present in the sample are the most important one. Assuming that the response

of a mixture is equal to the sum of the responses from the individual constituents, and

there is a direct linear relationship between the responses and the concentration of the

analytes, then M can be modeled as
q

M = XciNi + Nb + E (3)

i=1

where NI is the response matrix of a second order instrument, to a sample with q analytes,

ci is the concentration of analyte i, Ni is the instrument matrix of responses for a pure

analyvte i; Nb is the background signal, and E is the model error. The background term

can be either subtracted initially or inserted in the summation by defining it as the response

... -. *?
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of an imaginary analyte with unitary concentration,
q

NI ciNi + E (4)

BASES AND COMPONENTS

The physical base, {ai} and {bj}, is not the only possible base for describing the

data. The data matrix Mij from a second order instrument has an associated tensor M (see

Eq 2). From tensorial theory, the tensorial object M is invariant to changes in base,

therefore any base that spans the spaces defined by the standard bases ai and bj could be

used to represent the tensor M, and it would be describing the same mathematical object.

Two sets of bases useful for calibration will be introduced next.

Mathematical Base. A generally useful base for a second order tensor can be obtained

from the singular value decomposition 14 (SVD) of its matrix of components. The SVD

decomposes any matrix into the product of three matrices,

M = U S VT, (5)

where U and V are orthonormal matrices, i.e., their respective columns {ui} and {vj} are

orthogonal, unitary vectors; and S is a diagonal matrix. These two sets of vectors can be

used as the base for the tensor M, and the covariant and contravariant components are

equivalent, because they are orthorormal, and a direct product (projection formula) is

enough for the change of base. In matrix notation, by left multiplying M by UT and right

multiplying by V, the components of I in the new base are obtained.

Al,,, = UTN I V = UTUSVTV = S (6)

But S is a diagonal matrix, therefore the singular value decomposition vectors provide an

orthonormal base where the components of the tensor are a diagonal matrix, and Eq 2 is

reduced to

NI = Si ui vi (7)

A

m ~F
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where the summation runs over the i index. Thus, the matrices M and S represent the

same tensor under different bases. There is an infinite number of matrices that represent

the tensor M, but in most cases there is only one that is, at the same time, diagonal and its

bases are orthonormal, and it is given by the singular value decomposition. Fig 2

illustrates the idea of differents bases for the same second order tensor.

Chemical Base. There usually are relationships within the data matrix that further

constrain the possible values of the data. The fact that the elements of a column are related,

• -e.g., because they where collected simultaneously, is just one of those possible

relationships. A very important case occurs for data that is bilinear.' 5 Such data has the

interesting property that if there is only one analyte present in the sample, then the matrix

can be approximately factorized as the outer product of two vectors. This also implies that

, the rank of the matrix should be one, within the noise level. If the technique is, e.g.,

emission-excitation fluorescence, then one of the vectors would correspond to the

emission spectrum of the analyte and the other to its excitation spectrum,

Ni = xyiT + Ei(8)

where Ni is the bilinear data matrix for an analyte at unitary concentration, xi is the

spectrum in one order, e.g., excitation; yi is the spectrum in the other order, e.g.,

emission; and Ei is the error matrix of the approximation. This base is of great interest to

the chemist dealing with bilinear data. If a sample has q analytes, then the matrix can be

modeled by a sum of q unitary rank matrices, and will have rank q,
q q

M i cNi C= X, cxyj (9)
i=1 i=l

where the error in the model has been dropped for simplicity. Rewriting Eq 9 in matrix

notation. by considering the vectors { xi} and {y,} as ti'e columns of the matrices X and

Y, and defining C as a diagonal matrix, diag (C) = {c1 , , .... c, }, yields

IN X CYT ± E (10)

SI..
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scaling the {xj} vectors and the {yi} vectors to be of unitary length, then the matrix C has

to be scaled to another matrix, with ,he normalization constants in its diagonal, and zeros

in the rest (for simplicity, the new normalized matrices will also be denominated X and

Y),

NI = XBYT (11)
This equation is similar to Eq 5, with a diagonal matrix B, but the matrices X and Y are

not orthonormal. They are the pure analyte spectra, or sensor array patterns, in each

order. By analogous reasoning, expressing the tensor M in the bases {xji and {yi}, its

components will be again a diagonal matrix, in this case 1. It is important to realize that

Eq 11 is only an approximation. For normal experimental conditions, factors such as

.J.. noise, or systematic deviations from the model are always present. Similarly to Eq 9, the

tensor M can be approximated as

.N h i J3ii Xi Yi =Jfl xi Yi (12)

Note the position of the indexes ii as a superscript, indicating that the fi i are contravariant

components for both bases. If the instrument is bilinear, the vectors xi and yi do not

change with a change in concentration of the analyte i, i.e., ci. The only thing that changes

isf i i, therefore, for a linear response instrument, thefiii's are directly proportional to the

concentrations, and if they are determined, they can be used for quantitation.

CALIBRATION OF SECOND ORDER LVNSTRUNIENTS

Unikariate Calibration

Quantitation with second order instruments is often performed by selecting one

response from thle matrix that is completely unique the the analyte of interest. That

response is only a function of the concentration of that analyte, if Eq 9 holds, the response

6N

@%i4'-
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is linearly related to the concentration

, ij = a ck + b (13)

The advantage of this method is its simplicity, in many cases requires only to collect

the specific signal that is unique, rather than all the matrix of data. The disadvantage is that

it has the same limitations that other univariate techniques have, i.e., it is impossible to

detect or correct for interferences.

Multivariate Calibration

It is possible to use multivariate calibration for building a concentration prediction

model. Several or all the responses from the matrix can be arranged as a vector of

responses,

ii = i (l)j (I) r = Mi (14)

and the calibration problem can be reduced to the multivariate case, with every sample

having a response vector r. Geladi and coworkerss have use this approach for the second

and higher order data, unfolding all the data matrix into the vector r. Multivariate

calibration is well understood, and a tensorial approach to it has also been discussed in the

previous paper of these series,11 therefore will not be emphasized here.
[k5 .'

There are several advantages in reducing second order calibration to a vectorial,

multivariate problem. The analyst may choose a few relevant responses from the matrix,

e.g., the first row, reducing the acquisition time. It will have the advantages of

multivariate calibration, e.g., correction for background present in the calibration samples

and detection of interferences. In addition, this method can be used with data from any

second order instrument, whereas the methods discussed latter in this section are specific

for bilinear data. For non-bilinear data, multivariate calibration is the only choice at the

present time.

'---nl, Il.
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BILINEAR CALIBRATION

It is natural to suspect that if going from zero order to first order calibration there are

advantages, then there might be advantages for going from first order to second order

instruments. As it turns out, for bilinear second order data this is true, and it will be
described in this section.

The problem of calibration of second order bilinear data can be presented as one of

finding the components of the response matrix on two specific sets of base vectors,

corresponding to the responses in each order from a unitary amount of the analytes present

in the sample.

.v For example, if there are only two analytes present in a sample, the response matrix M

can be modeled as a simple linear combination of the individual analytes responses in each

order,

NJ = c1 X1 y1T + c2 X2 y2T (15)

if the matrices xk ykT were defined as the pure analyte responses at unitary concentration of

analyte i, then the tensorial components of M in the bases {(xJ, x, ); (y]T, y2T)} would

simply be the concentrations cl and c2.

In a similar way to calibration for first order instruments, 1 bilinear calibration

involves finding the components of the response matrix on two specific sets of base

V". vectors. To use a projection formula for finding the concentrations of analyte i, two

contravariant vectors must be estimated: xk, and Vk*,

Ck M T (16)

(No summation applies because index k is in both sides of the equation). These

contravariant vectors are unknown, but it is possible to estimate ci from a known tensor

that is closelv related to M: its pseudoinverse MN,

.%
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ill= (XCYT)+ = (YT)- C-t X- (17)

(,)T = (lIck) Xk* yk*T (18)

'.Therefore, the psc udoinverse of M is a linear combination of the contravariant vectors for

the analytes present in the sample, and the coefficients are the diagonal matrix of tie

concentration inverses. To estimate this coefficients, we need the covariant vectors

corresponding to the analyte of interest, i.e. their pure spectra xk and Yk at unitary

concentration

lick = YkT 'I+ Xk (19)

* I Single Sample Bilinear Calibration

If we measure a single calibration response matrix for a pure analyte, Nk = CN.k Xk

ykT, the concentration ratio can be estimated as

CVk /ICtk = CNk YkT M+ Xk = Nij (M )ij (20)

where a double summation over ij applies, and (M+)ij represents the iPh row and jth

column component of the pseudoinverse of M. Note that this equation does not include

any calibration information about the other analytes present in the sample, i.e.,

quantitation is possible in the presence of unlown interferences.

Simultaneous Evrimarinn of Concentrations and Spectra.

If the calibration sample contains several analytes, Eq 20 will yield erroneous results.

But it is possible to show that quantitative analysis is still feasible for this case, by taking a

different approach.

Assume that there is only one nulticomponent calibration sample. Calling N the tensor

of its responses, it can be modeled with an equation similar to Eq 11,

N = X x yTr + Ev (21)

N is the tensor in the standard base and is its corresponding components in the N, Y

NJ
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bases. The components of N are known only in the standard base. To describe a general

case, assume that the X and the Y are matrices that contain the superset of all the

components present in both M and N. There will be corresponding ./or 'i elements that

will be zero if they are not present in one or the other sample. It is evident that the bases X

and Y can approximate both tensors I and N with a diagonal matrix of components,

respectively 9 and . It will be shown that under certain conditions, there is only one base

that diagonalizes both tensors simultaneously, and that base can be estimated, together

with the ratios of the diagonal elements ijliPL.

To find the base, Eqs 10 - 11 can be used as a system of two matrix equations with

four unknowns, namely X, Y, B and . A possible approach to solve this system is to

express N as a function of M,

N = X YT = X1-1 {flYT

N X(g-  )x+(X gYT)

N = X (B-1 ) X- 18 (22)

these equations are valid only if all the elements of the diagonal matrix B3 are non-zero

because its inverse (-1) must be computed. This implies that M contains all the

*.N components of the superset X and Y. For a case that this is not true, the new matrix W =

- M + N can be used instead of M, that by definition would include all the components. X-

represents the contravariant form of the base X, and is simply the generalized inverse of

the X matrix. Defining k --14 , Eq 13 can now be factorized to result into a non-

symmetric eigenvalue-eigenvector problem, after right multiplying by M+ and then X as,

N M = X k X + N1 M+ (23)

(N Nl)X = X?,X,-X

(N ,"I) X = XX 24)

The spectra X are the right eignvectors of the square non-symmetric matrix (N MI), and

'p
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the eigenvalues X are the ratios of concentrations, because B and are proportional to

A: concentrations. Once X is known, YT can be estimated using

YT= g-1 X+ N (25)

Eqs 24 and 25 summarize the Generalized Rank Annihilation Method (GRAM). 15

A particular case of Eq 24 arises when N has only one component, N = x, Y1-

All the eigenvalues wiU be nearly zero with the exception of one, 1.= J3f/'. Then Eq 24

can be rewritten as

(x 1 y, TjI) Xl = X, /11 (26)

dropping x, and changing sides,

= vjTMl+ x, (27)

which is equivalent to the non-iterative Rank Annihilation equation introduced by

Lorber.1 6 17 Actually it is not necessary to estimate y1T and x, from N. Recognizing that

j= xi iy, Eq 27 can be simplified to

1 = (M 1+)j (2S)

which is equivalent to Eq 20.

- Ch~arac,,eri vrics v o_? i'mt ar Cahhi, in

Eqs 13-16 provide information useful to understand the possibilities and limitations of

Bilinear Calibration using GRAM. First of all, they not only represent a calibration

method, but also a curve resolution method, because the intrinsic factors, X and Y, are

extracted. It is not the same curve resolution as described in the literature,lS,19 in which

an uncertainty rcgion is defined where the intrinsic factors are present, and further

constraints must be used to choose a solution within the region. GRAM estimates a unique

solution without empirical assumptions.

It is a fact that when two (or more) cigenvalues are identical (or very close to each other

@.
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for experimental data), their corresponding eigenvectors are not unique. Therefore, one

of the restrictions of GRAM is that if two components have the same ratio of concentrations

between the samples, their eigenvalues will be very similar, and the estimated spectra will

be unreliable. Nevertheless, the eigenvalues should still provide quantitative information,
,.

but it will be more difficult to match the eigenvalue with its corresponding analyte, because

U- no estimated spectrum is available. If a library spectrum is available, simple target factor

analysis on the space generated by all the eigenvectors with the same eigenvalue should

confirm the identity of at least one of the eigenvalues. 20 ,21

A limitation arises when the intrinsic spectra in one of the orders are not linearly

i4l independent. Eq 17 is no longer valid, because X X. X+ NIMN* is not equal to X . X+.

Assuming that the Y are linearly dependent, the matrix N1I will have lower rank than the

• 9'. matrix X, which is made up of linearly independent vectors. The matrix (M +) is a

projection matrix that behaves like the identity matrix for vectors in the subspace spanned

by M. But if X has higher rank than M, it is necessarily true that the vectors in X will

have some component outside of the space spanned by M, therefore MM+ does not leave

X X. X+ unchanged. The results then should be unpredictable when such a dependency

exists. Fortunately there is a simple test that will detect, but not correct this problem: the

projection of N on M M should leave N unchanged within the noise level.

The estimation of the pseudoinverse of M is the most important step in GRAM. In a

similar way to first order tensorial calibration, the selection of the proper subspace for the

pseudoinverse is a determining step in the quality of the GRAM results. Eq 18 shows that

N is literally projected onto M, therefore the best way to span the space is to find a set of

vectors that express both M and N in an unbiased way. The approach suggested in this

work is to join the matrices in two different ways to form two larger matrix, and then

obtain their singular value decomposition,

- -
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WXV (MIN) = U, S VT (29a)

W = (M) = U2 SV 2  (2)

where W, has twice as many columns as M, and the same number of rows; and W 2 has

twice as many rows as MNI, and the same number of columns. The columns of the matrix

U1 are an unbiased estimation of the column subspace of both ?NI and N, and the columns

vectors V2 will similarly be an unbiased estimation of the row space of both M and N.

The number of relevant singular values is first estimated by cross validation in order to'i'truncate the SVD matrices U1 and V2" 1"7
"

trucat te SD mtrcesU, ndV 2 .2...3 Defining the truncated matrices as U = Uz

V 0 and V = V2, new projected matrices are used for the calculations,

N = UUTNVVT (30)

N-+ = V (UTM V) UT (31)

SNM + = UUTNVVT V(UT 1 V)-1UT

NM = U(UTNV)(UTMV)-IUT

- N 1+ = U N,, Muv-1 UT (32)

" where N., and 5I,, stand for the N and i tensors components in the U, V subspaces.

Finally, The new matrix N M is then substituted in Eq 24 for a GRAM calculation.

MULTIPLE SAMPLES CALIBRATION:
TRILINEAR DECOMPOSITION

Even with the advantage that only one sample is necessary for doing multicomponent

determinations, in many cases it is desirable to use more than one calibration sample, to

(I) Cover a wide dynamric range of concentrations for each analyte. Deviations

from the linear model may produce big prediction errors.

(2) Ensure that not two analytes will have the same concentration ratio,

precluding the extraction of the spectra.

A

J. 6 V *6.
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(3) Reduce the effect of collinearities.

(4) Increase the precision of the predicted concentrations.

The problem of bilinear multiple sample calibration can be solved in several ways, and it is

equivalent to a trilinear decomposition. In general there will be a set of L samples, either

calibration or unknown samples, with matices of response

{M 1, M2, ... M1, *.. ML }

Following Eq 11 or 21, any bilinear response matrix I can be modeled as

Ml = XBf1 YT + El (33)

which is also a third order tensor with components

M ij = Xik Yjk Zlk + Eij (34)

where Z1, = (91 ), and Eiji is the error of the model. The trilinear decomposition of

MAij is the matrices Xik, Yjk and Zlk. If some of the matrices M, are unknowns and

others are calibration samples, it is possible to use Zi, to estimate the relative
concentrations. The trilinear decomposition is unique in many cases, and it is usually

solved by minimizing the sum of squares of the residuals
q

R = E, = (Mi - L Xik Yjk Z1J) (35)
iji iji k=1

Appellof and Davidson found that for trilinear chemical data it was possible to obtain

the intrinsic vectors uniquely, by using a minimization algorithm and at least as many

slices (matrices of data) in the third order as components were present in the mixture.-4 In

fact, GRAM can be seen as a particular case of decomposition of a trilinear matrix, with

only two slices in the third order, the calibration and the test bilinear data respectively.

The problem of trilinear decomposition was studied in the early seventies by

researchers in the area ot psycorictrics.- 5 It was discovered that tlhc number of ffctors, K,

that could be extracted uniquely from third order data of trilincar nature is related to the rank
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in each order by the formula:

K 5, (q, + qy + q, - 2)/2 (36)

where q, qy, and q. are the ranks in each order as defined by Kruska 2 6 and the formula

sets an upper limit for the number of factors that can be extracted. For example, for q =

2 (two slices in the third order), and q., = qy, it is concluded that K < q. This means

that the upper limit for the number of unique factors that can be extracted is equal to the

rank of the first two orders, which is the result found for GRAM, where the number of

extracted components has to be equal or less than the rank in each order (by definition, for

bilinear data, the rank in the two orders is the same).

Unfortunately, the available algorithms for trilinear decomposition are based in

iterative minimizations of residuals, e.g., Alternating Least Squares procedures.

Convergence is not always achieved, and the more components that are present, the more

difficult it is to find the right solutions. This is a fundamental difference with GRAM, for

which the intrinsic vectors are eigenvectors, and no iterations are necessary. However, it

is possible to use GRAM in several ways to solve trilinear decompositions for bilinear

calibration with multiple samples. 27

CONCLUS ION

The application of GRAM is not restricted to calibration. Whenever two or more

samples that have some constituents in common are available, GRAM can be applied. For

example, solvent extraction could be used to generate two samples out of a single

unknown, and with a proper selection of the solvent, the analytes wviII have different

ratios of, onccnr c.a...-. T!:cn a bilinear instrument and G,.RAl can -e used to ext:act the

spectra of those analvtes for identification.

The grea test potential for GRAM and in general second order mrethods is perhaps in
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future second order instruments which are yet to be built. When using a bilinear

.- ' instrument with GRAM, the analys; need not worry about interferences and/or

contaminants in the analysis, and simultaneous determination of several components is

possible with only one calibration sample. Until recently, the main goal in analytical

chemistry has been to increase the resolution more and more, without considering data in

other orders, simply because no advantage was seen in doing so. That trend has started to

change, and everyday more second order instruments become available, as well as the

mathematical tools to handle their data.

Finally, the problem of second order calibration presents numerous challenges, such

*as sample and sensor selection selection for optimal calibration design, calibration of non-

bilinear second order data and error propagation. Work in some of these areas has already

started by the authors, and will be presented in future publications.2s

l4'
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FIGURE CAPTIONS

Fig 1. Equivalent representations of a simulated LC/UV data matrix with rank =2. (A)

Twelve points corresponding to the scans in the UV spectral space, (B) Fourteen points

corresponding to the wavelengths in th3 chromatographic space.

Fig 2. Tensorial change of base. Representation of equivalent tensors in different bases.

- R is the tensor in the standard bases and R, is the tensor in the bases U, V. If the

singular value decomposition of R U S V-T, R, is the diagonal matrix S.
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